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Introduction Projections Leveraging Action Prediction
Trajectories generated by diffusion models are inherently stochastic and . . . o
cannot satisfy the equations of motion of a robot. Predicted action can give a reachable next state $
PA(se Se41) = f(s¢,dr) 5 i Sti1
«  We use autoregressive projections to make trajectories feasible. o---" Tt e ®
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We interleave these projections through the denoising iterations. Predicted action can guide the projections ~ TTtreeo-t S
Background P4(se, Se41) = f(sp,dp +6a,) with da, = mg (§t+1 — f (s, &t))
Previous works either: . . e e
+ only consider fully-actuated systems; Projections Improve Feasibility
’ replan every feW tlmeStepS; Hopper Statewise Admissibility Error ({) Walker Cumulative Admissibility Error ({)

* project the trajectory after inference;
 plan action sequences. 031
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Most ditfusion works do not enforce robot dynamics and generate o
infeasible trajectories. S
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Problem Formulation
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Projection Scheduling
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— ~‘7m1dt'1.nfference Projections at high noise level (m==)
== PORHIEEREE - reduce quality of trajectories.
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Convex reachable set approximation
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Reference Trajectory Projection 2 DDAT (ours) & baseline

_ Greedy projections == tend to diverge
& .
51251 Use a reference to guide projections s Key Points
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g —loade Reference generated by diffusion improve the quality of diffusion
& —sampled planning.
= —=projected
070 —pmmmnnnns e pwon With higher quality samples, we can wait longer
fimesteps before replanning.
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