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Introduction

We introduce CurricuLLM, which leverages the reasoning and coding capabilities

of LLMs to design task curricula for complex robotic skills.
Key insights:

* LLM'’s task decomposition skills can be used for autonomously generating
sequences of subtasks that helps learning complex target task.

* LLM can design effective reward functions and goal distributions for each
subtask using its code writing ability.
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Classic Task Curriculum Design
X Manually designed by human experts, Domain specific

X Restricted to predefined, limited set of tasks

LLLLMs in Robotics

v Automatic task planning and skill decomposition using general world
knowledge

v Translation of natural language to reward function or environment code
using programming skills

Our approach:

 Step 1: Generate a sequence of subtasks in natural language form to aid
target task learning.

 Step 2: Translate natural language description of each subtask in executable
task code, which include the reward function code and goal distribution
code.

* Step 3: Evaluate trained policies based on trajectory rollout and subtask

description.
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Complex Robot Skills using Large Language Models

Detailed Algorithm

Step 1: Curriculum Design

* A curriculum generation LLM receives natural language descriptions of the
robot, environment, and target task to generate sequences of language
descriptions for the task sequence curriculum.
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Step 2: Task Code Sampling
A task code generation LLM generates samples of task code candidates for
the given subtask description. These are used to fine-tune the policy trained
for the previous subtask.
Step 3: Optimal Policy Selection
* An evaluation LLM evaluates policies trained with different task code
candidates to identify the policy that best aligns with the current subtask.
Selected policy is used as a pretrained policy for the next subtask.
r (
Task Code Generation Prompt @k - - )
N . Task Code W
[Robot Description] +y Generation LLM a . R
The berkeley humanoid is a bipedal robot .. Task Code Sampllng < / >
A
[Observation] .
(1) base_lin_vel: Linear velocity of base def compute_reward_curriculum():
é ) | # Yeloc1ty tracking reward
[Initial State & Environment Description] Previous Task Code N
Default initial values are initialized to make robot stand N torch. Squ'are (command[:, :2]
def compute_reward_curriculum(): \_ - ese_lrnvells, s2])) )
[Target Task] # Keep upright
The original task in the environment is to walk or run ... base_orientation_weight = 0.2 Load Pre-trained Policy
# Keep on feet .
base_height_weight = 0.1 and Fine-tune
b J g % N
Task Info v— @ Rollout of Trained Policy
A — .
Task 1 2 Po!lcy .
Name: Basic Stability Learning Evaluation LLM Policy 1:
Description: linear velocity [0, 0], heading angle [0, 0] base_lin_vel: [-0.202-0.114 0.017]
Reason: Ensure the robot to maintain balance ... base_ang_vel: [-0.001 -0.004 0.084]
i velocity_command: [-0.292 -0.156 0.074]
Task 2 isolicy 2: N
N 'L to Walk . c
D:;T:?ipt?oar::nlilfearavelocity [-0.5, 0.5], heading angle [0, 0] POIICy for eaCh SUbtaSk DD[Q
Reason: Simplifies the learning by first moving slow \_ > )
[ J [ J
Simulation Results
Fetch-Slide Fetch-Push AntMaze-UMaze
Success Rate Success Rate Success Rate
CurricuLLM (Ours) ] CurricuLLM (Ours) 0 CurricuLLM (Ours)
041 ___ HER —— HER | — HER
—— SAC 081 —— SAC —— SAC
o031 LLM-zeroshot o —— LLM-zeroshot o 0.61 —— LLM-zeroshot
E 5116 E
% 0.2 é " é 0.4 1
3 3
D o1 @ ‘%02_
0.2
0.0 +
0.0 1 0.0 - AM&E&MMM
(I) 160 2(I)O 3(I)O 4(I)0 5(I)O 6(I)0 (I) 1(I)0 2(I)0 3(I)O 4(I)O 5(I)O T T T T T T T T
Episodes (x1000) Episodes (x1000) 0 100200 300 - 400 ° 500 600 700

Episodes (x1000)

T

|

C ‘ AN CurricuLLM: Automatic Task Curricula Design for Learning

Kanghyun Ryu, Qiayuan Liao, Zhongyu Li,

Koushil Sreenath, Negar Mehr

CurricuLLM generates higher Quality

Reward Function

LLM-zeroshot generated reward for AntMaze

def compute reward curriculum(self) :

# Define reward for reaching the goal
success reward weight = 10.0
success reward = 0.0
if goal distance < 0.45:
success reward = 1.0

# Calculate total reward
reward = success reward weight * success reward

Reward function from CurricuLLM

Full text available on ArXiv at https://arxiv.org/pdf/2409.18382
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captures diverse behaviors
from learned subtasks.

Facilitates the efficient learning
of the target task.

CurricuLLM generated reward for AntMaze

def compute reward curriculum(self) :
# Calculate the magnitudes
velocity magnitude = np.linalg.norm(torso velocity)
angular velocity magnitude =
np.linalg.norm(torso angular velocity)
# As goal distance is received as an array but
expected to be treated as scalar
goal distance magnitude
= np.linalg.norm(goal distance)
# Weighting parameters setup reflecting curriculum
learning
velocity weight = 0.15
# Substantial reduction to focus on goal
achievement
angular velocity weight = 0.15
# Maintain orientation control importance
goal distance weight = 0.5
# Continuing to incentivize movement towards goal,
but with lesser intensity due to the new success
condition
success reward weight = 2.0
# High emphasis on reaching close proximity to the

goal
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Conclusion

 We introduce CurricuLLM, an automated task curriculum

generator using LLMs.

* CurricuLLM successfully created task curricula for diverse

robotics tasks in manipulation, navigation, and locomotion.

* We validated the policy learned with CurricuLLM in real-

world humanoid locomotion task.
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